

Federal Highway Administration

April 9, 2004

John D'Angelo Asphalt Materials Engineer Federal Highway Administration 400 7th Street SW, Rm3118 Washington, D. C. 20590

Characterization of PG 64-22(B6225), Vestenamer Polymer and Ground Tire RE: Rubber Blends

Dear Mr. D'Angelo:

Per your request we have finished characterizing the PG 64-22, Vestenamer Polymer and Ground Tire Rubber blends according to AASHTO M320 & MP1-A specifications. The ground tire rubber supplied by Mr. Bernie Burns was labeled 14-30 mesh, which is said to be from passenger car tires. The Vestenamer polymer 8012 was supplied by Degussa.

Asphalt Binder PG 64-22 from CITGO Refineries was used as a base asphalt to prepare the following blends:

- PG-64-22 Base Asphalt (B6225 TFHRC Lab ID) 1.
- PG 64-22 + 3% Vestenamer (by wt. of asphalt) 2.
- PG 64-22 + 5% GTR (By wt. of asphalt)
- PG 64-22 + 5% GTR (by wt. of asphalt) + 4.5% Vestenamer (by wt. of GTR).

The above blends were prepared as per manufacturer suggested modification process at TFHRC Chemistry Laboratory by Mr. Terry Arnold. The polymer was readily dispersed in blend 2. It appeared that the ground tire rubber was not dissolved both in blends 3 & 4. Office of Technology - Asphalt Binder Testing Laboratory, conducted asphalt Binder testing.

The performance grade of base asphalt was found to be PG 64-22. The high temperature grade was improved by one grade for blends 2, 3, & 4. The low temperature remained same for all asphalt binders. Technicians were able to see the rubber particles in blends 3 & 4 during the testing process. These blends were found to be non-homogeneous. The

			ų: *.
	·		
		·	
	V.	•	•
	\		•
		4	1
			V
			- 1
			, s
			· .
·			
		•	1
	* , .		
	e e e e e e e e e e e e e e e e e e e		
	·		
	•		
			.'
		•	
•			
			*
•			
$oldsymbol{\lambda}_{i}$			
			-

Experimental

- 1. The asphalt used is nominally PG 67, the crude source is 60% Bachequero-13 and 40% Menemota-21.
- 2. The polymer, Vestenamer 8012, is a polyoctenamer formed by ring opening of cyclooctene using a Ziegler-Natta catalyst. Both cis and trans isomers are possible, useful rubbery materials are made with a high trans content. The molecule may be represented as (R-CH=CH-)_n where R is -(CH₂)₆. Many of the polymer chains probably exist as large rings (macrocyclic) which gives rise to few chain ends. This is thought to account for the high tensile strength of even low molecular weight material.

Main use appears to be as an additive (<30phr) for rubbers to improve green strength and flow properties. Degussa describe Vestenamer 8012 as a reactive modifier for rubber/asphalt road surfacing.

- 3. The rubber used was provided by Satish. It was labeled as being 14-30 mesh and the package was mailed in Stamford TX on 2/26/04. The rubber was said to be from passenger car tires and to contain SBR.
- 4. Preparation was carried out in accordance with the work order given on page one.
- a) 5% GTR Asphalt was heated to 160°C (320°F) and stirred under high shear with a Silverson stirrer. The rubber was added slowly and the mixture stirred for a further 30 minutes under high shear. The rubber did not appear to dissolve to any appreciable extent so the mixture was not put through a screen. The sample is labeled as TSA171
- b) 5% GTR + 4.5% Vestenamer 8012 (based on the weight of the GTR) Asphalt was heated to 160°C under high shear. 5% GTR was added as before and the mixture stirred for a further 30 minutes under high shear. The polymer was then added and mixing continued for a further 60 minutes. The sample was not screened. It is labeled as TSA172
- c) 3% Vestenamer 8012 the asphalt was heated to 160°C under high shear and the polymer added slowly. Mixing was continued for 60 minutes. There was some increase in viscosity. The polymer dispersed readily and there was no residue left either on the screen or in the bottom of the can after pouring. The samples were placed in an oven at 174°C overnight to ensure the polymer had time to react with the asphalt. Sample labeled as TSA173

The samples have been returned to Satish. Since the asphalt contains so much solid rubber it may be difficult to obtain a meaningful result from physical testing with the DSR

Terry Arnold March 17 2004

Office of Pavement Technology Asphalt Binder Testing Laboratory

April 9, 2004

ASPHALT BINDER TEST REPORT

Date Sampled:

Date Test Completed:

Project ID:

Sample ID:

Blend ID:

Lab ID: Tested By: 03/14/2004

3/30/2004

Polymer/Rubber Study

B6225 - Base

PG 64-22 – Base Asphalt

031404-01

David Heidler/Darnell Jackson

M320 Performance Grade:

PG 64-22

M320 Continuous Grade:

PG 67.0-25.3

MP1-a Performance Grade:

PG 64-22

Critical Cracking Temperature:

-23.5 °C

Reported by:

Dayid Heidler

Senior Engineering Technician

B-C Salis

low temperature grade seems to have improved for the blend 4 based on the continuous grade. Table 1 shows the summary of the performance grade for the above blends.

Table1: Performance Grade Summary of PG 64-22, GTR & Vestenamer Blends

Asphalt Binder	M320 Grade	M320-Continuous Grade	MP1-a Grade	T _{cr}
PG 64-22 - Base	PG 64-22	PG 67.0-25.3	PG 64-22	-23.5
PG 64-22 + Polymer	PG 70-22	PG 73.3-23.8	PG 70-22	-25.3
PG 64-22 + GTR	PG 70-22	PG 70.3-26.1	PG 70-22	-24.7
PG 64-22 + Polymer + GTR	PG 70-22	PG 74.4-27.1	PG 70-22	-23.5

Attached please find the test reports for each of the above blends. The test report provides the summary of test results, M320 Performance Grade, M320 Continuous Grade MP1-a performance grade and the Critical Cracking Temperature (T_{cr}).

Should you have any questions please feel free to give me a call at (202) 493-3103.

Sincerely,

Satish Ramaiah Project Engineer

CC: Tom Harman, TFHRC Terry Arnold, TFHRC

<u>Preparation of Asphalt Modified with GTR and Vestenamer Polymer 8012 from Degussa</u>

Background from Satish Ramaiah March 4 2004:

Degussa has sent us Vestenamer 8012 polymer to look at. John D'Angelo would like to look at what it will do with Ground Tire Rubber (GTR) and a PG64-22 asphalt binder. He also, thinks that it is a good idea to use it without the GTR to see its affect. This is just a quick look to see the effect of the material on MP1-a performance grading.

We need to blend the polymer and GTR with PG 64-22 asphalt binder. The Vestenamer polymer is in the form of pellets. I would like to request your help in processing these materials. If you could please ask Mr. Terry Arnold to blend these materials for us, we would greatly appreciate it. If Mr. Terry Arnold could provide us with the blended material we would be able to conduct tests to determine MP1-a performance grade on the blended materials.

Work Plan

Purpose:

To determine the effect of Vestenamer Polymer (TOR) + Ground Tire Rubber (GTR) modification (using conventional asphalt binders) on MP1-a performance grade.

Materials:

Base Asphalt: PG 64-22 Vestenamer Polymer Ground Tire Rubber (14-30 Mesh)

Manufacturer suggested Modification Process:

Vestenamer Polymer Modification:

Three percent of Vestenamer polymer mixed with asphalt based on the weight of the asphalt. The mixture is blended for 60 minutes at 320°F.

Vestenamer Polymer + GTR rubber Modification

Five percent of GTR rubber is mixed with asphalt based on the weight of the asphalt. Then 4.5% of Vestenamer Polymer is added to the asphalt based on the weight of the GTR. The mixture is blended for 60 minutes at 320°F.

Testing Plan:

Tests required to determine the performance grade according to AASHTO MP1-a will be performed on the following base asphalt & modified binders:

- 1. Base Asphalt: PG 64-22
- 2. PG 64-22 + Vestenamer Polymer (3%)
- 3. PG 64-22 + GTR (5% by wt. of asphalt) + Vestenamer (4.5% by wt. of GTR)

Analysis:

Comparison of MP1-a Grading.

Performance Graded (PG) Asphalt Binder

Project:	RUBBER SDY		Bin	der ID:	B622	5 BASE	
Specifying Agency:	FHWA		Ref	iner:			
Laboratory:	TE-39		Cru	de Source:	•		
State/County:	VA		Sam	ole Date:	/	/	
Contractor:			Sam	ole Locati	on:		
Performance High Grade, PG 64		ntinuous ^I Grade	67.0	Low -25.3 Li	inearity	PAS	SS
	Binder	Grading	Test Re	sults 🕖			
		Original	Binder				
Test		Test Temp,	°C Te	st Results	<u>C1</u>	<u>riteria</u>	Pass/Fail
(1) Specific Gravit	у, (Т 228)		N	o Data	e ^e		
(2) Flash Point (T	48)		N	o Data °C	<u>></u>	230 °C	
(3) Viscosity (ASTM	D 4402)	135.0		0.45 Pa-	s <u><</u>	3.00 Pa-	PASS
(4) Dynamic Shear, (G*/Sinδ,(TP5)	64.0	·	1.57 kPa	<u>></u>	1.00 kPa	
	Rolling Thin	Film Oven	(RTFO) Re	sidue (T 2	40)		W44
Test		Test Temp,		st Results		riteria	Pass/Fail
(5) Rolling Thin Fi	lm Oven Mass Lo	oss		0.119%	<u><</u>	1.00 %	PASS
(6) Dynamic Shear, (G*/Sinδ,(TP5)	64.0		3.21 kPa	<u>></u>	2.20 kPa	
	Pressure Ag			sidue (PP1 st Results		riteria	Pass/Fail
Test		Test Temp,					
(7) Dynamic Shear, (25		2,722 kPa		5,000 kPa	NOTE
(8) Creep Stiffness	, S, (TP1)	-12.0	. 1	82,500 kPa		00,000 kPa	
m-Value				0.376	<u>></u>	0.300	
(9) T critical, Tcr				-23.5 °C			
NOTE: The dynamic shear temperature based on the grade has been increase	he maximum High	and minimum	Low temper	y the crite atures sat	eria at t isfied.	he intermed The Low ter	diate mperature
Reviewed by:					Date: _		
L							

Sample ID: B6225 BASE

Original Binder - VISCOSITY

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 BASE

Date Tested

03/14/2004

Binder Viscosity by Rotational Viscometer

	°C	Speed, rpm	Torque,	Viscosity, cP	Shear Stress,	Shear Rate	e, Time, sec	Viscosity, Pa·s	Viscosity, Poise
135.	0	20.0	3.6	450	30.6	6.8	. 60	0.45	4.5
				450					
				**					
							Average	0.45	4.5
						Standard	Deviation	0.00	0.0

ORIGINAL BINDER - DYNAMIC SHEAR

Project RUBBER SDY

Technician

BUTCH

Binder ID

B6225 BASE

Date Tested

03/18/2004

Criteria

 $\texttt{G*/Sin} \; \delta \; \geq 1.00 \; \, k\texttt{Pa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	$\sin \delta$	G*/Sinδ kPa	Log of G*/Sinδ
1	58	64	3.333	85.03	0.996	3.35	0.52
2	64	64	1.570	86.62	0.998	1.57	0.19
3	70	64	0.750	87.41	0.999	0.75	-0.12
. 4	76						

PG Rating based upon maximum temperature to satisfy criteria

64

Continuous (True) PG Rating

67.7

Original Binder - Strain Sweep, Linearity Test

Project RUBBER SDY Technician BUTCH

Binder ID B6225 BASE Date Tested 03/18/2004

Strain Rate	Test Temp, °C	Complex Modulus G*, kPa	Phase Angle, degrees	Loss Ratio, G*/G* @ 2%	Linearity Check
2.0%	64.0	1.527	88.27	100.0%	LINEAR
408	64.0	1.535	86.73	100.5%	LINEAR
6.0%	64.0	1.532	86.18	100.3%	LINEAR
8.0%	64.0	1.533	86.62	100.4%	LINEAR
10.0%	64.0	1.541	86.51	100.9%	LINEAR
12.0%	64.0	1.539	86.54	100.8%	LINEAR
14.0%	64.0	1.537	86.47	100.7%	LINEAR
16.0%	64.0	1.536	86.52	100.6%	LINEAR
18.0%	64.0	1.535	86.47	100.5%	LINEAR
20.0%	64.0	1.532	86.50	100.3%	LINEAR
22.0%	64.0	1.534	86.49	100.5%	LINEAR
24.0%	64.0	1.530	86.55	100.2%	LINEAR
26.0%	64.0	1.529	86.59	100.1%	LINEAR
28.0%	64.0	1.529	86.59.	100.1%	LINEAR
30.0%	64.0	1.527	86.53	100.0%	LINEAR

RTFO RESIDUE - MASS LOSS

Project

RUBBER SDY

Technician

BUTCH

.Binder ID

B6225 BASE

Date Tested 03/18/2004

RTFO Masses

Specimen	п¥п	"B"
(A) Bottle Tare Mass	166.440	163.475
(B) Mass of Bottle & Binder	201.657	. 198.789
(C) Final Mass of Bottle & Binder	201.620	198.742
Percent Mass Loss, 100(B-C)/(B-A)	0.105	0.133
	Average	0.119

RTFO RESIDUE - DYNAMIC SHEAR

Project RUBBER SDY

Technician BUTCH

Binder ID B6225 BASE

Date Tested 03/23/2004

Criteria

 $G*/Sin \delta \ge 2.20 \ kPa$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	Sin δ	G*/Sin δ kPa	Log of G*/Sinδ
1	58	64	6.998	81.20	0.988	7.08	0.85
2	64	64	3.193	83.43	0.993	3.21	0.50
3	70	64	1.497	85.36	0.997	1.50	0.17
4	76	·					
		•					
P	G Rating ba	ased upon ma	ximum tempe	erature to sa	tisfy criters	ia	64
· .			(Continuous (T	rue) PG Ratin	ng	67.0

PAV RESIDUE - DYNAMIC SHEAR

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 BASE

Date Tested

03/24/2004

Criteria

G* $\sin \delta \leq 5,000 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	Sin δ	G* Sinδ kPa
1	25	25	3,460.0	51.88	0.787	2,722.0
2	28	25	2,145.0	55.07	0.820	1,758.5
3	31			•		
4	34					

Lowest temperature to satisfy criteria

25

PAV	Residue		Creep	Stiffness,	BBR
-----	---------	--	-------	------------	-----

		PAV	Residue - Creep	Stiffness,	BBR	
Proj		•	Technician BUTCH		Criteria, S	300000 kPa
Bind	er ID B6225	BASE	Date Tested 03/24/	2004	Criteria, M	0.300
Test	Temp #1	-12	Avg Creep Stiffness, MPa (at 60 sec)	182,500	Avg Slope, m-value (at 60 sec)	0.376
Time	Load Test1	d, Newtons Test2	Estimate Stiffnes Testl	ed Creep ss (kPa) Test2	Slope, m Testl	n-value Test2
8	0.9890	0.9860	360,000	359,000	0.293	0.295
15	0.9880	0.9840	. 297,000	296,000	0.320	0.319
30	0.9880	0.9830	235,000	235,000	0.349	0.346
60	0.9870	0.9810	182,000	183,000	0.378	0.373
120	0.9850	0.9800	139,000	140,000	0.408	0.400
240	0.9830	0.9800	103,000	105,000	.0.437	0.426
Test	Temp #2	-18	Avg Creep Stiffness, MPa (at 60 sec)	450,500	Avg Slope, m-value (at 60 sec)	0.323
Time sec	Load Test1	, Newtons Test2	Estimate Stiffnes Test1		Slope,m Test1	-value Test2
8	0.9950	0.9870	762,000	830,000	0.234	0.247
15	0.9950	0.9810	652,000	705,000	0.260	0.273
30	0.9940	0.9810	539,000	578,000	0.288	0.301
60	0.9930	0.9780	437,000	464,000	0:316	0.329
120	0.9910	0.9780	347,000	366,000	0.345	0.358
240	0.9900'	0.9780	271,000	282,000	0.373	0.386
Test (°C)	Temp #3	-24	Avg Creep Stiffness, MPa (at 60 sec)		Avg Slope, m-value (at 60 sec)	
Time sec	Load, Testl	Newtons Test2	Estimated Stiffness Testl		Slope,m- Test1	-value Test2
8	-					
15						
30						
60						
120				1		
240						
		1	- 1		I	1

PG Rating based upon minimum temperature to satisfy criteria

-22

PAV Residue - Direct Tension, DTT

Project	RUBBER SDY	·.	Technician	BUTCH
Binder ID	B6225 BASE		Date Tested	03/30/2004

Test Test Number Temp, °C	Failure Strain	Average	Failure Stress, Pa	Average
1 -12	1.12		3.000	
•	0.85		2.430	
	1.53		3.580	
· .	1.76		3.940	•
	1.42		3.470	
	1.08	1.46	2.910	3.498
2 -18	0.33		2.290	
	0.36.		2.360	
	0.69		4.130	
	0.43		2.760	
	0.44		2.930	•
	0.45	0.50	2.930	3.178
3 -24		, •		

4 . -30

Office of Pavement Technology Asphalt Binder Testing Laboratory

April 9, 2004

ASPHALT BINDER TEST REPORT

Date Sampled:

03/14/2004

Date Test Completed:

3/30/2004

Project ID:

Polymer/Rubber Study

Sample ID:

B6225 - Poly

Blend ID:

PG 64-22 - 3% Vestenamer

Lab ID:

031404-02

Tested By:

David Heidler/Darnell Jackson

M320 Performance Grade:

PG 70-22

M320 Continuous Grade:

PG 73.3-23.8

MP1-a Performance Grade:

PG 70-22

Critical Cracking Temperature:

-25.3 °C

Reported by:

David Heidler

Senior Engineering Technician

Reviewed by Satish Ramaiah

Project Engineer

Performance Graded (PG) Asphalt Binder

Project: RUBBER SDY	Binder ID: Be223 POLI
Specifying Agency: FHWA	Refiner:
Laboratory: TE-39	Crude Source:
State/County: VA	Sample Date: / /
Contractor:	Sample Location:
Performance High Low Continuous High Grade, PG 70 -22 PG Grade 73	Low .3 -23.8 Linearity PASS
Binder Grading Test	Results
Original Binde	er
Test Temp, °C	Test Results Criteria Pass/Fail
(1) Specific Gravity, (T 228)	No Data
(2) Flash Point (T 48)	No Data °C > 230 °C
(3) Viscosity (ASTM D 4402) 135.0	0.88 Pa-s \(\) 3.00 Pa-s PASS
(4) Dynamic Shear, G*/Sinδ,(TP5) 70.0	1.70 kPa <u>></u> 1.00 kPa
Rolling Thin Film Oven (RTFO) Residue (T 240)
Rolling Thin Film Oven (RTFO Test Temp, °C) Residue (T 240) Test Results Criteria Pass/Fail
	•
Test Temp, °C	Test Results Criteria Pass/Fail
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin8, (TP5) 70.0	Test Results Criteria Pass/Fail 0.102 % ≤ 1.00 % PASS 3.28 kPa ≥ 2.20 kPa
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin§, (TP5) 70.0 Pressure Aging Vessel (PAV	Test Results Criteria Pass/Fail 0.102 % ≤ 1.00 % PASS 3.28 kPa ≥ 2.20 kPa) Residue (PP1)
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin&, (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C	Test Results Criteria Pass/Fail 0.102 % < 1.00 % PASS 3.28 kPa > 2.20 kPa Pass/Fail Criteria Pass/Fail
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin\(\delta\), (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin\(\delta\), (TP5) 28	Test Results
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin8, (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin8, (TP5) 28 (8) Creep Stiffness, S, (TP1) -12.0	Test Results
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin8, (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin8, (TP5) 28 (8) Creep Stiffness, S, (TP1) -12.0 m-Value	Test Results
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin&,(TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin&, (TP5) 28 (8) Creep Stiffness, S, (TP1) -12.0 m-Value (9) T critical, Tcr	Test Results
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin8, (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin8, (TP5) 28 (8) Creep Stiffness, S, (TP1) -12.0 m-Value	Test Results Criteria Pass/Fail 0.102 % < 1.00 % PASS 3.28 kPa > 2.20 kPa Pass/Fail Criteria Pass/Fail 2,511 kPa < 5,000 kPa NOTE 232,000 kPa < 300,000 kPa 0.316 > 0.300 -25.3 °C atisfy the criteria at the intermediate emperatures satisfied. The Low temperature
Test Temp, °C (5) Rolling Thin Film Oven Mass Loss (6) Dynamic Shear, G*/Sin8, (TP5) 70.0 Pressure Aging Vessel (PAV Test Temp, °C (7) Dynamic Shear, G*Sin8, (TP5) 28 (8) Creep Stiffness, S, (TP1) -12.0 m-Value (9) T critical, Tcr NOTE: The dynamic shear results (PAV residue) fail to sate temperature based on the maximum High and minimum Low to	Test Results Criteria Pass/Fail 0.102 % < 1.00 % PASS 3.28 kPa > 2.20 kPa Pass/Fail Criteria Pass/Fail 2,511 kPa < 5,000 kPa NOTE 232,000 kPa < 300,000 kPa 0.316 > 0.300 -25.3 °C atisfy the criteria at the intermediate emperatures satisfied. The Low temperature

Sample ID: B6225 + POLY

Original Binder - VISCOSITY

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 POLY

Date Tested

03/14/2004

Binder Viscosity by Rotational Viscometer

Torque,	Viscosity, cP	Shear Stress, D/cmª	Shear Rate 1/sec	, Time, sec	Viscosity, Pa·s	Viscosity, Poise
7.0	875	59.5	6.8	60	0.88	8.8
*	875					
		•		,		
				Average	0.88	8.8
			Standard	Deviațion	0.00	0.0
	7.0	% CP 7.0 875 875	% cP D/cm ^a 7.0 875 59.5 875	% CP D/cm ^a 1/sec 7.0 875 59.5 6.8 875	% CP D/cm ^a 1/sec sec 7.0 875 59.5 6.8 60 875	R CP D/cm ^a 1/sec sec Pa·s 7.0 875 59.5 6.8 60 0.88 875 Average 0.88

ORIGINAL BINDER - DYNAMIC SHEAR

Project RUBBER SDY Technician BUTCH

Binder ID B6225 POLY Date Tested 03/14/2004

Criteria

 $G*/Sin \delta \ge 1.00 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	$\texttt{Sin} \ \delta$	G*/Sinδ kPa	Log of G*/Sinδ
1	58	64	7.421	80.29	0.986	7.53	0.87
2	64	64	3.534	82.45	0.991	3.56	0.55
3	7.0	64	1.689	84.38	0.995	1.70	0.23
4	76	64	0.832	86.08	0.998	0.83	-0.08

PG Rating based upon maximum temperature to satisfy criteria 70

Continuous (True) PG Rating 74.4

Original Binder - Strain Sweep, Linearity Test

Project RUBBER SDY Technician BUTCH

Binder ID B6225 POLY Date Tested 03/14/2004

Strain Rate	Test Temp, °C	Complex Modulus G*, kPa	Phase Angle, degrees	Loss Ratio, G*/G* @ 2%	Linearity Check
2.0%	70.0	1.677	83.65	100.0%	LINEAR
4.0%	70.0	1.657	84.76	98.8%	LINEAR
6.0%	70.0	1.651	84.27	98.5%	LINEAR
8.0%	70.0	1.655	84.33	98.7%	LINEAR
10.0%	70.0	1.650	84.40	98.4%	LINEAR
12.0%	70.0	1.649	84.39	98.3%	LINEAR
14.0%	70.0	1.652	84.14	98.5%	LINEAR
16.0%	70.0	1.652	84.42	98.5%	LINEAR
18.0%	70.0	1.654	84.34	98.6%	LINEAR
20.0%	70.0	1.655	84.42	98.7%	LINEAR
22.0%	70.0	1.655	84.42	98.78	LINEAR
24.0%	70.0	1.655	84.34	. 98.7%	LINEAR
26.0%	70.0	1.657	84.38	98.8%	LINEAR
28.0%	70.0	1.655	84.37	98.7%	LINEAR
30.0%	70.0	1.659	84.44	98.9%	LINEAR

RTFO RESIDUE - MASS LOSS

Project

RUBBER SDY

Technician

BUTCH

Binder ID B6225 POLY

Date Tested 03/14/2004

RTFO Masses

Specimen	п¥п	пВп
(A) Bottle Tare Mass	171.978	163.158
(B) Mass of Bottle & Binder	207.862	198.831
(C) Final Mass of Bottle & Binder	207.825	198.795
Percent Mass Loss, 100(B-C)/(B-A)	0.103	0.101
	Average	0.102

RTFO RESIDUE - DYNAMIC SHEAR

Project RUBBER SDY Technician

Binder ID B6225 POLY Date Tested 03/23/2004

Criteria

BUTCH

 $G*/Sin \delta \ge 2.20 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, $^{\delta}$ degrees	Sin δ	G*/Sinδ kPa	Log of G*/Sinδ
1	64	64	6.877	78.04	0.978	7.03	0.84
2	7 Q	64	3.237	80.82	0.987	3.27	0.51
3	76	. 64	1.563	83.12	0.993	1.57	0.19
4	. 82			·			
PO	Rating b	ased upon ma	ximum tempe:	rature to sati	sfy criteria	a 7	0

PAV RESIDUE - DYNAMIC SHEAR

Project

RUBBER SDY

Technician

BUTCH.

Binder ID

B6225 POLY

Date Tested

03/24/2004

Criteria

G* Sin δ \leq 5,000 kPa

Test Numbe		Zero Gap Temp °C	G* kPa	Delta, δ degrees	$\sin\delta$	G* Sin δ kPa
1	28	25	3,409.0	47.44	0.737	2,510.9
2	31					
. 3	34					
4	37				·	
			·			

PAV	Residue		Creep	Stiffness,	BBR
-----	---------	--	-------	------------	-----

		PAV	Residue - Creep	Stiffness,	BBR	
Proje	ect RUBBER	SDY	Technician BUTCH		Criteria, S	300000 kPa
Binde	er ID B6225	POLY .	Date Tested 03/24/	2004	Criteria, M	0.300
Test (°C)	Temp #1	-12	Avg Creep Stiffness, MPa (at 60 sec)	232,000	Avg Slope, m-value (at 60 sec)	0.316
Time sec	Load Test1	d, Newtons Test2	Estimate Stiffnes Testl	ed Creep ss (kPa) Test2	Slope,m Test1	-value Test2
8	0.9910	0.9850	412,000	408,000	0.249	0.247
15	0.9900	0.9830	350,000	347,000	0.269	0.269
30	0.9880	0.9830	288,000	285,000	0.292	0.294
60	0.9880	0.9830	233,000	231,000	0.314	0.318
120	0.9850	0.9850	186,000	183,000	0.336	0.342
240	0.9850	0.9850	146,000	143,000	0.358	0.366
Test (°C)	Temp #2	-18	Avg Creep Stiffness, MPa (at 60 sec)	442,500	Avg Slope, m-value (at 60 sec)	0.263
Time sec	Loac Testl	l, Newtons Test2	Estimate Stiffnes Testl		Slope,m Test1	-value Test2
8	0.9810	0.9790	684,000	716,000	0.188	0.195
15	0.9790	0.9770	603,000	629,000	0.211	0.217
30	0.9790	.0.9750	517,000	536,000	0.263	0.241
- 60	0.9790	0.9740	435,000	450,000	0.261	0.265
120	0.9760	0.9750	360,000	371,000	0.286	0.289
240	0.9740	0.9730	292,000	301,000	0.311	0.313
Test (°C)	Temp #3	-24	Avg Creep Stiffness, MPa (at 60 sec)		Avg Slope, m-value (at 60 sec)	
Time sec	Load Test1	, Newtons Test2	Estimated Stiffness Test1	•	Slope,m Test1	-value Test2
8						
15						
30						
60						
120						
240						

PAV Residue - Direct Tension, DTT

Project	RUBBER SDY	Technician	BUTCH
Binder ID	B6225 POLY	Date Tested	03/30/2004

Test Test Number Temp,	Failure C Strain	Average	Failure Stress, Pa	Average
1 -1	2 2.25		5.210	
•	1.80		4.610	
	1.83		4.760	
	2.11		5.120	
	1.46		4.120	
	0.78	2.00	2.600	4.925
2 -1	8 0.93		5.000	
	0.52		3.090	
	0.70		4.050	
•	0.91		5.020	* •
	1.00		5.470	
	1.02	0.97	5.470	5.205
3 -2	4			

-30

Office of Pavement Technology Asphalt Binder Testing Laboratory

April 9, 2004

ASPHALT BINDER TEST REPORT

Date Sample prepared:

Date Test Completed:

Project ID:

Sample ID:

Blend ID:

Lab ID:

Tested By:

03/14/2004

3/31/2004

Polymer/Rubber Study

B6225 - GTR

PG 64-22 - 5% GTR

031404-03

David Heidler/Darnell Jackson

M320 Performance Grade:

PG 70-22

M320 Continuous Grade:

PG 70.3-26.1

MP1-a Performance Grade:

PG 70-22

Critical Cracking Temperature:

-23.5 °C

Reported by:

David Heidler

Senior Engineering Technician

Reviewed by Satish Ramaiah

Project Engineer

Performance Graded (PG) Asphalt Binder

Binder ID:

B6225 GTR

Project:	RUBBER SDY		Binder ID:	B6225 GTR
Specifying Agency:	FHWA		Refiner:	• •
Laboratory:	TE-39		Crude Source:	
State/County:	AV		Sample Date:	/ /
Contractor:			Sample Location:	
Performance High Grade, PG 70	7 []	ontinuous High G Grade 70	Low -26.1 Lines	arity NO DATA
	Binde	r Grading Test	Results	
		Original Bind	er	
Test		Test Temp, °C	Test Results	Criteria Pass/Fail
(1) Specific Gravit	ty, (T 228)		No Data	
(2) Flash Point (T	48)		No Dața °C <u>></u>	230 °C
(3) Viscosity (AST)	M D 4402)	135.0	0.63 Pa−s ≤	3.00 Pa-s PASS
(4) Dynamic Shear,	G*/Sinδ,(TP5)	70.0	1.03 kPa ≥	1.00 kPa
	Dalling Whin	Film Oven (RTFO) Residue (T 240)	
Test	ROTTING THE	Test Temp, °C	Test Results	Criteria Pass/Fail
(5) Rolling Thin F:	ilm Oron Mass I		0.162%	1.00% PASS
(5) ROLLING THIN F.	IIM OVEH MASS I			
(6) Dynamic Shear,	G*/Sinδ,(TP5)	76.0	3.36 kPa >	2.20 kPa
	Pressure A	aging Vessel (PAV) Residue (PP1)	
Test		Test Temp, °C	Test Results	<u>Criteria</u> <u>Pass/Fail</u>
(7) Dynamic Shear,	G*Sinδ, (TP5)	28	2,425 kPa <	5,000 kPa NOTE
(8) Creep Stiffnes	s, S, (TP1)	-12.0	157,000 kPa	300,000 kPa
			0.358	≥ 0.300
(9) T critical, Tc			-23.5 °C	
NOTE: The dynamic she	ar results (PAV the maximum High	and minimum Low t	emperatures satisti	a at the intermediate ied. The Low temperature
Reviewed by:			Da	te:
			100	

Sample ID: B6225 GTR

Original Binder - VISCOSITY

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 GTR

Date Tested 03/14/2004

Binder Viscosity by Rotational Viscometer

Temp, °C	Speed,	Torque,	Viscosity, cP	Shear Stress, D/cmª	Shear Rate 1/sec	Time,	Viscosity, Pa·s	Viscosity, Poise
135.0	20.0	5.0	625	42.5	6.8	60	0.63	6.3
			625					
	ř		•					•
					•			
						Average	0.63	6.3
					Standard	Deviation	0.00	0.0

ORIGINAL BINDER - DYNAMIC SHEAR

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 GTR

Date Tested

03/14/2004

Criteria

 $\texttt{G*/Sin} \; \delta \; \geq \; \texttt{1.00 kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta,δ degrees	$\sin \delta$	G*/Sinδ kPa	Log of G*/Sinδ
1	58	70	4.512	83.21	0.993	4.54	0.65
2	64	64	2.135	84.96	0.996	2.14	0.33
3	. 70	64	1.030	86.59	0.998	1.03	0.01
4	76	64	0.508	87.72	0.999	0.51	-0.29

PG Rating based upon maximum temperature to satisfy criteria

70

Continuous (True) PG Rating

70.3

Original Binder - Strain Sweep, Linearity Test

Project RUBBER SDY Technician BUTCH

Binder ID B6225 GTR Date Tested 03/24/2004

			4		
Strain Rate	Test Temp, °C	Complex Modulus G*, kPa	Phase Angle, degrees	Loss Ratio, G*/G* @ 2%	Linearity Check
2.0%	70.0	0.987	87.06	100.0%	LINEAR
4.0%	:	0.994	87.16	100.7%	LINEAR
6.0%		0.990	86.59	100.3%	LINEAR
8.0%	.	0.990	86.49	100.3%	LINEAR
10.0%		0.989	86.64	100.2%	LINEAR
12.0%		0.994	86.62	100.7%	LINEAR
14.0%		0.991	86.70	100.4%	LINEAR
16.0%		0.986	86.53	99.9%	LINEAR
18.0%		0.991	86.67	100.4%	LINEAR
20.0%		0.988	86.62	100.1%	LINEAR
22.0%		0.993	86.73	100.6%	LINEAR
24.0%		0.991	86.66	100.4%	LINEAR
26.0%		0.990	86.66	100.3%	LINEAR
28.0%		0.992	86.75	100.5%	LINEAR
30.0%		0.989	86.83	100.2%	LINEAR

RTFO RESIDUE - MASS LOSS

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 GTR

Date Tested

03/18/2004

RTFO Masses

Specimen	"A"	. "B"
(A) D-441- M N		
(A) Bottle Tare Mass	165.349	167.764
(B) Mass of Bottle & Binder	200.312	202.601
(C) Final Mass of Bottle & Binder	200.255	202.545
		·
Percent Mass Loss, 100(B-C)/(B-A)	0.163	0.161
	Average	0.162

RTFO RESIDUE - DYNAMIC SHEAR

Project RUBBER SDY Technician BUTCH

Binder ID B6225 GTR Date Tested 03/23/2004

Criteria

 $G*/Sin \delta \ge 2.20 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	Sin δ	G*/Sinδ kPa	Log of G*/Sinδ
1	64	70	8.761	61.43	0.878	9.97	0.99
2	70	70	5.044	62.29	0.885	5.69	0.75
. з	76	. 70	2.957	61.69	0.880	3.35	0.52
4	82	70.	1.874	59.37	0.860	2.17	0.33
Р	G Rating ba	ased upon ma			tisfy criteria rue) PG Rating		76 81.4

PAV RESIDUE - DYNAMIC SHEAR

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 GTR

Date Tested

03/24/2004

Criteria

G* Sin $\delta \leq 5,000$ kPa

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta,δ degrees	Sin δ	G* Sin δ kPa
1	28	28	3,082.0	51.90	0.787	2,425.3
2	31					
3	34					
4	. 37					
				•		•

Lowest temperature to satisfy criteria

28

Project RUBBER SDY Technician BUTCH Criteria, S Binder ID B6225 GTR Date Tested 03/24/2004 Criteria, M Avg Creep Stiffness, MPa 157,000 m-value (at 60 sec) Time Load, Newtons Stiffness (kPa) Sec Test1 Test2 Test1 Test2 Test1 Test1 Criteria, S Avg Slope, m-value (at 60 sec) Estimated Creep Stiffness (kPa) Test1 Test2 Test1	300000 kPa 0.300 0.358 -value Test2
Test Temp #1 -12 Avg Creep Stiffness, MPa 157,000 m-value (at 60 sec) Time Load, Newtons Stiffness (kPa) Slope, m-value Slope, m-value Slope, m-value (at 60 sec)	0.358 -value
Test Temp #1 -12 Stiffness, MPa 157,000 m-value (°C) (at 60 sec) (at 60 sec) Time Load, Newtons Stiffness (kPa) Slope, m-	-value
Time Load, Newtons Stiffness (kPa) Slope, m-	
8 0.9920 0.9950 311,000 291,000 0.280	0.292
15 0.9860 0.9920 . 259,000 240,000 0.305	0.312
30 0.9870 0.9890 207,000 192,000 0.330	0.334
60 0.9860 0.9880 163,000 151,000 0.359	0.357
120 0.9850 0.9880 126,000 117,000 0.386	0.379
240 0.9850 0.9860 95,000 89,000 0.413	0.402
Avg Creep Avg Slope, Test Temp #2 -18 Stiffness, MPa 406,000 m-value (°C) (at 60 sec) (at 60 sec)	0.310
Time Load, Newtons Stiffness (kPa) Slope, m-sec Test1 Test2 Test1 Test2 Test1	value Test2
8 0.9890 0.9930 683,000 718,000 0.225	0.235
15 0.9880 0.9920 588,000 615,000 0.252	0.258
30 0.9870 0.9920 489,000 509,000 0.280	0.284
60 0.9860 0.9900 398,000 414,000 0.309	0.310
120 0.9870 0.9900 318,000 331,000 0.338	0.336
240 0.9860 0.9900 249,000 260,000 0.367	0.361
Avg Creep Avg Slope, Test Temp #3 -24 Stiffness, MPa m-value (°C) (at 60 sec) (at 60 sec)	
Time Load, Newtons Stiffness (kPa) Slope, m-v sec Test1 Test2 Test1 Test2 Test1	value Test2
8	
15	
30	
60	
120	
240	

PAV Residue - Direct Tension, DTT

Project	RUBBER SDY	Technician	витсн
Binder ID	B6225 GTR	Date Tested	03/31/2004

Test Number	Test Temp,	°C	Failure Strain		Average		Failure Stress, Pa	Average
ì	•	-12	1.36			•	3.170	÷
1			2.48				4.480	
			1.31				3.150	
			1.18				2.750	
			1.23	:			3.000	
			0.96		1.60		2.440	3.450
2	-	-18	0.23				1.330	
			0.50				2.840	
\$			0.53		·		2.850	
			0.92		•		4.610	
		,	0.62				3.490	
			0.57		0.66		3.490	3.550
3		24						

4 -30

Office of Pavement Technology Asphalt Binder Testing Laboratory

April 9, 2004

ASPHALT BINDER TEST REPORT

Date Sample prepared:

03/14/2004

Date Test Completed:

3/31/2004

Project ID:

Polymer/Rubber Study

Sample ID:

B6225 - Both

Blend ID:

Lab ID:

PG 64-22 – 5% GTR + 4.5% Vestenamer 031404-04

Tested By:

David Heidler/Darnell Jackson

M320 Performance Grade:

PG 70-22

M320 Continuous Grade:

PG 74.4-27.1

MP1-a Performance Grade:

PG 70-22

Critical Cracking Temperature:

-24.7 °C

Reported by:

David Heidler

Senior Engineering Technician

Reviewed by Satish Ramaiah

Project Engineer

Performance Graded (PG) Asphalt Binder

Project:	RUBBER SDY	Binder ID:	B6225 BOTH
Specifying Agency:	FHWA	Refiner:	
Laboratory:	TE-39	Crude Source:	
State/County:	VA	Sample Date:	/ /
Contractor:		Sample Locatio	n:
Performance High Grade, PG 70	7		nearity PASS
	Binder Gradin	ng Test Results	
	Origin	nal Binder	
Test	Test Ten	mp, °C Test Results	Criteria Pass/Fail
(1) Specific Gravit	ту, (Т 228)	No Data	
(2) Flash Point (T	48)	No Data °C	≥ 230 °C
(3) Viscosity (ASTM	1 D 4402) 135	.0 0.73 Pa-s	<pre>4 3.00 Pa-s PASS</pre>
(4) Dynamic Shear,	G*/Sinδ,(TP5) 70	.0 1.58 kPa	≥ 1.00 kPa
·	Rolling Thin Film Ove	n (RTFO) Residue (T 24	0)
Test	Rolling Thin Film Ove	n (RTFO) Residue (T 24 p, °C Test Results	O) Criteria Pass/Fail
Test (5) Rolling Thin Fi	Test Tem	•	
	Test Tem	Test Results 0.129 %	Criteria Pass/Fail
(5) Rolling Thin Fi	Test Tem lm Oven Mass Loss G*/Sin8,(TP5) 76	0.129 % 0 2.39 kPa	Criteria Pass/Fail ≤ 1.00% PASS
(5) Rolling Thin Fi	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess	Test Results 0.129 % 0 2.39 kPa el (PAV) Residue (PP1)	Criteria Pass/Fail 1.00% PASS 2.20 kPa
(5) Rolling Thin Fi (6) Dynamic Shear, Test	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem	Test Results 0.129 % 0.2.39 kPa el (PAV) Residue (PP1) p, °C Test Results	Criteria Pass/Fail ≤ 1.00 % PASS ≥ 2.20 kPa Criteria Pass/Fail
(5) Rolling Thin Fi	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem G*Sin8, (TP5)	Test Results 0.129 % 0.2.39 kPa el (PAV) Residue (PP1) p, °C Test Results 1,826 kPa	Criteria Pass/Fail ≤ 1.00 % PASS > 2.20 kPa Criteria Pass/Fail ≤ 5,000 kPa NOTE
(5) Rolling Thin Fi (6) Dynamic Shear, Test (7) Dynamic Shear, (8) Creep Stiffness	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem G*Sin8, (TP5)	Test Results 0.129 % 0.2.39 kPa el (PAV) Residue (PP1) p, °C Test Results 1,826 kPa	Criteria Pass/Fail 1.00 % PASS 2.20 kPa Criteria Pass/Fail 5,000 kPa NOTE 300,000 kPa
(5) Rolling Thin Fi (6) Dynamic Shear, Test (7) Dynamic Shear,	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem G*Sin8, (TP5)	p, °C Test Results 0.129 % 2.39 kPa el (PAV) Residue (PP1) p, °C Test Results 1,826 kPa 165,500 kPa	Criteria Pass/Fail 1.00 % PASS 2.20 kPa Criteria Pass/Fail 5,000 kPa NOTE 300,000 kPa
(5) Rolling Thin Fi (6) Dynamic Shear, Test (7) Dynamic Shear, (8) Creep Stiffness m-Value (9) T critical, Tcr NOTE: The dynamic sheatemperature based on the statement of the statement o	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem G*Sin8, (TP5)	### 10.129 % ### 0.129 % ### 0.129 % ### 0.39 kPa ### 10.2.39 kPa ### 10.39 kPa ### 1.826 kPa ### 1.826 kPa ### 0.357 ### -24.7 °C ### 1.00 temperatures satisfies #### 1.00 temperatures satisfies #### 1.00 temperatures satisfies	Criteria Pass/Fail 1.00% PASS 2.20 kPa Criteria Pass/Fail 5,000 kPa NOTE 300,000 kPa 0.300 ia at the intermediate
(5) Rolling Thin Fi (6) Dynamic Shear, Test (7) Dynamic Shear, (8) Creep Stiffness m-Value (9) T critical, Tcr NOTE: The dynamic sheatemperature based on the statement of the statement o	Test Tem Im Oven Mass Loss G*/Sin8, (TP5) 76 Pressure Aging Vess Test Tem G*Sin8, (TP5) -12 r results (PAV residue) fathe maximum High and minimum	np, °C Test Results 0.129 % 0.129 % 2.39 kPa el (PAV) Residue (PP1) p, °C Test Results 1,826 kPa 165,500 kPa 0.357 -24.7 °C ail to satisfy the criter of the content of the conte	Criteria Pass/Fail 1.00% PASS 2.20 kPa Criteria Pass/Fail 5,000 kPa NOTE 300,000 kPa 0.300 ia at the intermediate

Sample ID: B6225 + BOTH

Original Binder - VISCOSITY

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 BOTH

Date Tested

03/14/2004

Binder Viscosity by Rotational Viscometer

Temp,	Speed,	Torque,	Viscosity, cP	Shear Stress, D/cmª	Shear Rate, 1/sec	Time, sec	Viscosity, Pa·s	Viscosity, Poise
135.0	20.0	5.8	725	49.3	6.8	60	0.73	7.3
			725		•			
					A	verage	0.73	7.3
	·				Standard De	eviation	0.00	0.0

ORIGINAL BINDER - DYNAMIC SHEAR

Project RUBBER SDY

Technician

BUTCH

B6225 BOTH Binder ID

Date Tested

03/14/2004

Criteria

 $G^*/\sin\delta \ge 1.00 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	Sin δ	G*/Sinδ kPa	Log of G*/Sinδ
. 1	58	70	6.146	76.84	0.974	6.31	0.80
2	64	70	3.041	78.21	0.979	3.11	0.49
3	70	70	1.544	77.85	0.978	1.58	0.19
4	76	70 .	0.834	75.23	0.967	0.86	-0.06

PG Rating based upon maximum temperature to satisfy criteria

70

Continuous (True) PG Rating

74.4

Original Binder - Strain Sweep, Linearity Test

Project RUBBER SDY Technician BUTCH

Binder ID B6225 BOTH Date Tested 03/24/2004

Strain Rate	Test Temp, °C	Complex Modulus G*, kPa	Phase Angle, degrees	Loss Ratio, G*/G* @ 2%	Linearity Check
2.0%	70.0	1.506	76.78	100.0%	LINEAR
4.0%	70.0	1.497	77.14	99.4%	LINEAR
6.0%	70.0	1.492	77.25	99.1%	LINEAR
8.0%	70.0	1.497	77.99	99,4%	LINEAR
10.0%	70.0	1.497	78.04	99.4%	LINEAR
12.0%	70.0	1.500	78.43	99.6%	LINEAR
14.0%	70.0	1.499	78.77	99.5%	LINEAR
16.0%	70.0	1.494	79.27	99.2%	LINEAR
18.0%	70.0	1.495	79.58	99.3%	LINEAR
20.0%	70.0	1.492	79.81	99.1%	LINEAR
22.0%	70.0	1.495	80.11	99.3%	LINEAR
24.0%	70.0	1.492	80.37	99.1%	LINEAR
26.0%	70.0	1.490	80.60	98.9%	LINEAR
28.0%	70.0	1.490	80.60	98.9%	LINEAR
30.0%	70.0	1.488	80.63	98.8%	LINEAR

RTFO RESIDUE - MASS LOSS

Project

RUBBER SDY

Technician

BUTCH -

Binder ID B6225 BOTH

Date Tested 03/19/2004

RTFO Masses

Specimen	"A"	"B"
(A) Bottle Tare Mass	171.067	169.711
(D) Manage Brandle & Birde		
(B) Mass of Bottle & Binder	206.951	204.926
(0) 7: 1 4 6 7 11 1		41. 11
(C) Final Mass of Bottle & Binder	206.905	204.880
	•	
Dames 1.36 To 100 (D. C) ((D. C)	0.100	0.101
Percent Mass Loss, 100(B-C)/(B-A)	0.128	0.131
	, 2	0.129
	Average	0.125
	· · · · · · · · · · · · · · · · · · ·	

RTFO RESIDUE - DYNAMIC SHEAR

Project RUBBER SDY Technician BUTCH

Binder ID B6225 BOTH Date Tested 03/23/2004

Criteria

 $G*/Sin \delta \ge 2.20 \text{ kPa}$

Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta, δ degrees	Sin δ	G*/Sinδ kPa	Log of G*/Sinδ
1.	64	70	7.846	68.15	0.928	8.45	0.92
2	70	70	4.190	70.16	0.941	4.45	0.64
3	76	70	2.264	71.52	0.948	2.38	0.37
4	82						

PG Rating based upon maximum temperature to satisfy criteria 76

Continuous (True) PG Rating 76.7

PAV RESIDUE - DYNAMIC SHEAR

Project

RUBBER SDY

Technician

BUTCH

Binder ID

B6225 BOTH

Date Tested

03/24/2004

Criteria.

G* Sin $\delta \leq 5,000$ kPa

	Test Number	Test Temp °C	Zero Gap Temp °C	G* kPa	Delta,δ degrees	Sin δ	G* Sinδ kPa
	1	28	28	2,376.0	50.23	0.769	1,826.2
	2	31		v			
•	3	34					
	4	37				÷ .	

Lowest temperature to satisfy criteria

28

	*	PAV	Residue - Creep	Stiffness,	BBR	
Proje	ect RUBBER	SDY	Technician BUTCH		Criteria, S	3.00000 kPa
Binde	er ID B6225	ВОТН	Date Tested 03/24/	2004	Criteria, M	0.300
Test	Temp #1	-12	Avg Creep Stiffness, MPa (at 60 sec)	165,500	Avg Slope, m-value (at 60 sec)	0.357
Time sec	Load Test1	d, Newtons Test2	Estimate Stiffnes Test1	ed Creep ss (kPa) Test2	Slope, Test1	n-value Test2
8	0.9850	0.9850	334,000	295,000	0.281	0.279
15	0.9830	0.9850	278,000	246,000	0.305	0.301
30	0.9800	0.9840	223,000	197,000	0.331	0.328
60	0.9810	0.9850	175,000	156,000	0.357	0.356
120	0.9810	0.9800	135,000	120,000	0.383	0.384
240	0.9810	0.9800	103,000	91,000	0.409	0.411
Test (°C)	Temp #2	-18	Avg Creep Stiffness, MPa (at 60 sec)	331,500	Avg Slope, m-value (at 60 sec)	0.306
Time sec	Load Testl	, Newtons Test2	Estimate Stiffnes Testl		Slope,n Test1	ı-value Test2
8	0.9860	0.9870	592,000	547,000	0.235	0.225
15	0.9850	0.9770	508,000	471,000	0.256	0.250
30	0.9820	0.9750	421,000	392,000	0.281	0.278
60	0.9840	0.9740	343,000	320,000	. 0.307	0.305
120	0.9840	0.9720	275,000	256,000	0.332	0.333
240	0.9830	0.9770	216,000	201,000	0.358	0.361
Test (°C)	Temp #3	-24	Avg Creep Stiffness, MPa (at 60 sec)	· · · · · · · · · · · · · · · · · · ·	Avg Slope, m-value (at 60 sec)	
Time sec	Load, Test1	Newtons Test2	Estimated Stiffness Test1		Slope,m Test1	
8						
15						
30						
60				,		
120		,		•		
					· · · · · · · · · · · · · · · · · · ·	

240.

PAV Residue - Direct Tension, DTT

Project	RUBBER SDY	Technician	витсн
Binder ID	В6225 ВОТН	Date Teste	d 03/31/2004

Test Test Number Temp, °C	Failure Strain	Average	Failure Stress, Pa	Average
1 -12	1.06		2.600	
	1.32		2.970	
	1.65		3.450	
	1.95		3.710	
	0.84		2.120	
,	1.22	1.54	2.920	3.263
2 -18	0.24		1.330	
	0.53		2.520	
	0.72		3.330	
	0.45		2.460	
	0.31		1.580	
	0.31	0.50	1.580	2.473
324				-

4 -30

♥ State of Market